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LETTER TO THE EDITOR

New integrable generalization of the one-dimensionalt–J
model
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Departamento de Fı́sica, Universidade Federal de São Carlos, 13565-905, São Carlos, SP Brazil

Received 12 September 1997, in final form 18 December 1997

Abstract. A new generalization of thet–J model with a nearest-neighbour hopping is
formulated and solved exactly by the Bethe ansatz method in the thermodynamic limit. The
model describes the dynamics of fermions with different spins and with isotropic and anisotropic
interactions.

Recently there has been considerable interest in studying low-dimensional electronic models
of strong correlation due to the possibility that the normal state of the two-dimensional novel
superconductivity may share some interesting features of a one dimensional interacting
electron system [1]. In one-dimension, the Bethe ansatz technique can allow one to exactly
solve Hamiltonians in special cases, such as the Hubbard model [2] and the ordinaryt–J
model at its supersymmetric point [3, 4]. For example, it is possible to obtain the low-energy
gapless excitation spectrum around the ground state by the finite-size scaling method [5, 6]
and calculate the critical exponents of the correlation functions [7–9].

The t–J model is a lattice model on the restricted electronic Hilbert space, where the
occurrence of two electrons on the same lattice site is forbidden. This restriction corresponds
to an implicitly infinite on-site Coulomb repulsion. Two types of interactions between
electrons on nearest-neighbour sites are considered: a change interaction of strengthV and
a spin-exchange interactionJ . The Hamiltonian of the extended version of thet–J model
with spin S = (N − 1)/2 has the form [3, 4, 10]

H = −
L∑
j=1

N∑
α=1

P(c+j,αcj+1,α + c+j+1,αcj,α)P

−
L∑
j=1

[
J

N∑
α 6=β

c+j,αcj,βc
+
j+1,βcj+1,α +

N∑
α,β=1

Vαβc
+
j,αcj,αc

+
j+1,βcj+1,β

]
(1)

where cj,α annihilates an electron with a spin componentα, P is the projector on the
subspace of non-doubly occupied states, andL is the lattice size. The anisotropy in the
charge interactions is introduced through a matrixVαβ .

In the isotropic caseVαβ = V the Hamiltonian (1) corresponds to the traditionalt–J
model which was exactly solved by the Bethe ansatz method at the supersymmetric point
(V = −J = 1) for the caseS = 1

2 [3, 4, 9–11]. The generalization of this result for the
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arbitrary spinS was carried out in [12–14]. Other generalizations of thet–J model were
studied in [15–18]. In particular, in [18] it was shown that the model (1) is solvable for
arbitrary spin and special values of the couplingJ andVαβ :

J = ε0

Vαβ = −ε0{(1+ εα) coshγ · δαβ + exp[sign(α − β)γ ](1− δαβ)}
(2)

whereγ > 0 is a measure of the anisotropy andε0, εα = ±1(α = 1, . . . , N). It was shown
more exactly in [18] that the Hamiltonian (1), (2) is the quantum counterpart of the so-called
Perk–Schultz model [19] which was diagonalized by Schultz in the most general form [20]
(see also [21, 22]). This model is also related to the anisotropic version of the Sutherland
model [11]. In fact, in [19] Perk and Schultz considered two models, the Hamiltonian of the
first one, in terms of fermionic creation operators, is given by (1), (2) and the Hamiltonian
of the second one is given by [19, 22]

H = −
L∑
j=1

N∑
α,β=1

c+jαcjβc
+
j+1,αcj+1,β . (3)

The systems which are described by (3) and their different modifications were studied in
their spin formulation in [23–25] (see also references therein). In this letter we present
a new set of models of strongly correlated particles which are exactly solvable. In these
models we have different classes of particles. The interactions among these particles are of
type (1) or (3) depending on whether the particles belong to the same class.

First let us formulate the problem and write down the Hamiltonian. Consider a periodic
chain withL sites andn particles. There areN possible types (or species) of particles
labelled byα = 1, 2, . . . , N . These distinct types of particles are split inP classes,
Qj(j = 1, 2, . . . , P ), each class havingNQj (j = 1, 2, . . . , P ) types of particles. This
implies

P∑
i=1

NQi
= N

and if, in a given configuration,nQj is the total number of particles in classesQj we also
have

P∑
i=1

nQj = n.

We order the labels that specify the type of particle sequentially such that the firstNQ1 of
them are the types in classQ1, the nextNQ2 in classQ2 and so on. This allows us to use
the simplified notation

∑
αεQi

instead of

NQ1+···+NQi∑
α=NQ1+···+NQi−1+1

.

In each class whereNQi
> 1 we choose an arbitrary one-to-one correspondence between

the particle typesα ⇔ ᾱ(α, ᾱ ∈ Qi), (i = 1, 2, . . . , P ). So in each class there areqQj
conjugate species, where

[(NQi
+ 1)/2] 6 qQi

6 NQi

and [N/2] means the integer part of the numberN/2. In the case whereNQi
= 1, since we

have only one type of particles there are no conjugate species of particles. The dynamics
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of the above-defined particles is described by the Hamiltonian

H = −
L∑
j=1

N∑
α=1

P(c+j,αcj+1,α + c+j+1,αcj,α)P

−
L∑
j=1

P∑
i=1

∑
α,β∈Qi

ε0εi [U
(i)
α U

(i)
β c
+
jαcjβc

+
j+1,ᾱcj+1,β̄ − (1+ εi) coshγ njαnj+1,β ]

−
N∑
j=1

P∑
i 6=k=1

∑
α∈Qi,β∈Qk

ε0{gikc+jαcjβc+j+1,βcj+1,α − exp[sign(α − β)γ ]njαnj+1,β}

(4)

whereεi, ε0 = ±1, gij = g−1
ji and the parametersU(i)

α play the role of anisotropies inside
of each setQi and satisfy

U(i)
α = 1/U(i)

ᾱ

∑
α∈Qi

(U(i)
α )

2 = 2 coshγ. (5)

The ordinaryt–J model given in (1), (2) is obtained by choosingP = N andgik = 1.
In this case we have only one particle in each class and consequently we have no conjugate
species and constraint (5) can be ignored. The anisotropic version of the Perk–Schultz
model of the second type (3) can be obtained by choosingP = 1 so that all particles belong
to the same class. The Hamiltonian (3) is the isotropic version of the model [23, 24] in the
sector where we have no holes(N = L), and the conjugate species are(α, ᾱ = N −α+1).
The case in which we also have holes(N 6 L) was introduced and studied in [25, 26].
In the general case the Hamiltonian (4) describes the dynamics of fermions with different
spins. For each class we have one kind of fermions, which have spin interactions among
its components inside of a given class (‘internal’) and between distinct classes (‘external’).
For example, the caseNQi

= 2 corresponds to spinSi = 1
2 and the ‘internal’ interactions

are quadratic while in the caseNQi
= 3 we have a spinSi = 1 with biquadratic ‘internal’

interactions [25]. For the general caseSi = (NQi
−1)/2 the ‘internal’ magnetic interactions

inside of each set can be written as a polynomial of degree 2Si in the spin operator.
The exact solution for the eigenstates and eigenvalues of the Hamiltonian (4) can be

obtained within the framework of the Bethe ansatz method [27, 28]. The central object of
this method is the two-particle scattering matrixS which is calculated from the single- and
two-particle processes described by the Hamiltonian (4). In this model a direct calculation
of the scattering processes involving three or more particles shows that these processes can
be expressed as the product of two-particles scattering ones. This is a direct consequence
of the constraint that we have at most one particle per site, like in the ordinaryt–J model
[3]. The nonvanishing elements of theS-matrix are given by

S
αβ

α′β ′(k1, k2) = [sin(iγ − λ1+ λ2)]
−1Ŝ

αβ

α′β ′(λ1− λ2)

Ŝ
αβ

α′β ′(λ) = δαβ ′δβ,α′ sin(iγ + εiλ)− εiδαβ̄δβ ′ᾱ′U(i)
α U

(i)
β ′ sinλ for α, β, α′, β ′ ∈ Qi

Ŝ
αβ

α′β ′(λ) = iδαβ ′δβ,α′ sinhγ exp[i sign(β − α)λ] − gikδαα′δββ ′ sinλ

for α ∈ Qi;β ∈ Qk, i 6= k

(6)

whereλj (j = 1, 2, . . . , n) are suitable particle rapidities related to the momenta{kj } of the
electrons by

kj =
{
π −2(λj ; 1

2γ ) ε0 = −1

−2(λj ; 1
2γ ) ε0 = +1

(7)



L236 Letter to the Editor

with the function2 defined by

2(λ; γ ) = 2 arctan(cotγ · tanλ) − π < 2(λ, γ ) 6 π. (8)

The S-matrix for the given model has to satisfy the Yang–Baxter equations [27, 29] in
order to ensure exact integrability through the Bethe ansatz method. As far as we know,
the form of theS-matrix (6) is a new one, therefore it is necessary to check the Yang–
Baxter equations. We have checked these equations numerically for the different choices of
parametersU(i)

α and the setsQi .
A different way to check the Yang–Baxter equations comes from the fact that theS-

matrix is related with the quantum chain

H =
N−1∑
j=1

ej (9)

where

ej = coshγ +
∑
i 6=k

∑
α∈Qi,β∈Qk

[gikE
αβ

j E
βα

j+1− sinhγ sign(α − β)Eααj E
ββ

j+1]

+
∑
i

∑
α,β∈Qi

εi [U
(i)
α U

(i)
β E

αβ

j E
ᾱβ̄

j+1− coshγEααj E
ββ

j+1] (10)

and theN × N matricesEαβ have elements(Eαβ)γ δ = δαγ δβδ. More precisely the matrix
Ŝ(U) is expressed in terms of the two-bodyN2×N2 matrix ej by the relation

Ŝj (U) =
∑
α,βγ,δ

Ŝ
α,β

γ,δ E
α,δ
j E

β,γ

j+1

= sin(λ+ iγ )− sin(λ)ej . (11)

The Ŝ(U)-matrix satisfies the Yang–Baxter equation if the matricesej are generators of the
Hecke algebra [30, 31]

ej ej±1ej − ej = ej±1ej ej±1− ej±1

[ej , ek] = 0 for |j − k| > 2

e2
j = 2 coshγ ej

(12)

since in this case relation (11) is the standard ‘Baxterization’ of the Hecke generators [31].
We have checked thatej satisfies equations (12) and thus we proved the integrability of the
model (4) [33].

Moreover, the quantum chain (9), (10) is exactly integrable and contains as a particular
case the Perk–Schultz and Sutherland chains [19, 11]. It is interesting to observe that the
Hamiltonian (9) withN+1 types of particles split inP +1 groupsQj(j = 1, 2, . . . , P +1),
in which the first group has only one type of particles(NQ1 = 1) andg1k = gk1 = −1(k =
2, . . . , N + 1) reproduces, apart from the boundary term, the Hamiltonian (4) with holes
andN types of particles.

The Hamiltonian (4) is diagonalized by a standard procedure by imposing periodic
boundary conditions on the Bethe function. These boundary conditions can be expressed
in terms of the transfer matrix of the non-uniform models related to (6) by using the
quantum method of the inverse problem [32, 33]. The rapiditiesλj that define an-particle
wavefunction are obtained by solving the equations[

sinh(λj − iγ /2)

sinh(λj + iγ /2)

]L
= (−1)n−13(λj ) (13)
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where3(λ) is the eigenvalue of the transfer matrix

T
{αl}
{α′l} (λ) =

∑
{βl}

n∏
l=1

S
αlβl+1

α′lβl
(λl − λ) (βn+1 = β1). (14)

It is simple to verify that besides the number of particles in each class of particlesnQi
the

number of conjugate pairs in each class, which we denote byn′i is also a conserved quantity
in the Hamiltonian (4). Here we call two conjugate particles of the same class paired if they
are consecutive particles and have no unpaired particles of this class between them. We also
denote byni(ni = nQi

− 2n′i ) the number of unpaired particles in classQi . In the general
case the complete diagonalization of the transfer matrix (14) is not a simple problem. For
simplicity we restrict ourselves to some particular cases. As a starting point let us consider
model (4) in the sector where we have no pairs of particles. If we have no pairs of a set
Qi then the first interaction term in the Hamiltonian (4) does not work and all particles of
this set are identical and can be considered as one component of the model. In this way
the general model (4) is reduced to the anisotropict–J model withP components [18, 20]
and the diagonalization of the transfer matrix of the inhomogenous model (14) gives the
following Bethe ansatz equations

mσ−1∏
j ′=1

sin
(
λ
(σ)
j − λ(σ−1)

j ′ + i
2εσ γ

)
sin
(
λ
(σ)
j − λ(σ−1)

j ′ − i
2εσ γ

) = −εnσσ εnσ+1

σ+1

q∏
ρ=0

(GσρGρσ+1)
nρ

×
mσ∏
j ′=1

sin(λ(σ)j − λ(σ)j ′ + iεσ+1γ )

sin(λ(σ)j − λ(σ)j ′ − iεσ γ )

mσ+1∏
j ′=1

sin
(
λ
(σ)
j − λ(σ+1)

j ′ − i
2εσ+1γ

)
sin
(
λ
(σ)
j − λ(σ+1)

j ′ + i
2εσ+1γ

) (15)

where

j = 1, 2, . . . , mσ σ = 0, 1, . . . , q − 1

λ
(−1)
j = 0 λ

(0)
j = λj

nj = mj−1−mj m−1 = L mq = 0 n0 = n
(16)

and

q = P ε0 = 1 Gσσ = G0σ = Gσ0 = 1

εi = εi Gik = gik (i, k = 1, 2, . . . , P )
(17)

nj being the number of particles in the classQj .
The total energyE and momentumP of the model are given in terms of the particle

rapiditiesλj ,

E = −2
n∑
j=1

coskj = 2ε0

n∑
j=1

(
coshγ

sinh2 γ

coshγ − 2 cos 2λj

)

P =
n∑
j=1

k(λj ).

(18)

Consider now the model (4) in the general case where in each classQj we havenj
unpaired particles andn′j conjugate pairs of particles. The reference state90 is made up
of a state in which there are no conjugate pairs. Examining (4) we see that when this
Hamiltonian acts on a state, it looks for conjugate pairs and replaces them by a sum over
all such pairs from a given setQj . The second possible process is the permutation of
two neighbour particles or one particle and one conjugate pair. It is important that both
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processes do not depend on the number of types of particles in each setNQj . Thus, the
Bethe ansatz equations depend only onnj andn′j (j = 1, 2, . . . ,Qj ).

We now restrict ourselves to the case where we have arbitrarynj and n′j (j =
1, 2, . . . ,Q) but only all NQj = 2. We have shown by a direct calculation that in this
case Hamiltonian (4) can be reduced to the 2P -componentt–J model [18, 20]. Thus, the
general solution of the model (4) in this case is given by (15)–(17) with redefined parameters
εσ andGσρ

q = 2P ε0 = 1 Gσσ = G0σ = Gσ0 = 1 εi = ε[(i+1)/2]

Gik = g[(i+1)/2],[(k+1)/2] [(i + 1)/2] 6= [(k + 1)/2] (i, k = 1, 2, . . . ,2P)

G2l−1,2l = G2l,2l−1 = εl (l = 1, 2, . . . , P )

(19)

and nown2l−1 andn2l − n2l−1 are numbers of conjugate pairs and separate particles of the
setQl(l = 1, 2, . . . , P ).

The ground-state energy and excited states of the Hamiltonian (4) can be calculated in
principle by straightforward methods on the base of Bethe ansatz equations (15)–(17), which
in the thermodynamic limit can be written as integral equations. However, the solution of
these equations depends strongly on sign functionsεα as well as on the phase factorsgik
and should be considered separately for different choices of these parameters.

Since these models satisfy the Hecke algebras we expect for free boundary conditions
that their eigenspectra should depend only on the values of the variablesεi andgik; (i, k =
1, 2, . . . , P ), apart from degeneracies [31].

In the case of periodic boundary conditions this algebraic argument does not work and
in general the eigenspectra will also depend on the particular choice of the classesQj .
However, in the thermodynamic limit these differences should be irrelevant and we expect
that the solution (15)–(18) will be valid for the arbitraryNQj for a given set of{εi} and
{gik}.

This work was supported in part by the Brazilian agencies CNPq, FAPESP, FINEP and by
The Russian Foundation of Fundamental Investigations (Grant No RFFI 97-02-16146).
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